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The semi-empirical equation for heat capacity at constant volume Cv is proposed from the standpoint of the 
homogeneous function approach and applied to polymers (polystyrene and poly(methyl methacrylate) over 
the temperature range 0.1-4.0 K, polyethylene over 1-400 K and poly(tetrafluoroethylene) over 1-360 K) 
and simple liquids (argon, methane, n-heptane, carbon tetrachloride and benzene) from the triple point to the 
gas-liquid critical point T~, using data published by many authors. The equation derived in this work is 

Cv = cl  ( ydo /T)exp  ( _ Co 1 ido) 

Y 

where Ido is defined by 1do = f Ydo/(1 + Y) d Y, Y = (T~ - T ) / T  and cl, Co, Yo ~ 0 and d o are constants. For simple 

liquids, Cv is expressed by Y° 

Cv = Cl (Ya° /T)exp{  - Co 1 yao + a/(do + 1)} 

under the condition Y ,~ 1.0, and the value of d o estimated from the experimental data is -0.10, which 
suggests that CvoC(Tc - T) -°'1° near T c. The equation for Cv for polymers is expressed by 

Cv=c?T a° 

and the value ofa o obtained in this work is ~ 3.0 over 1-4 K, while ao ~ 1.0 over 30-400 K and 0.14).4 K. It is 
found in this work that the heat capacity function Cv = A T + B T a observed in amorphous polymers below 
4 K can be predicted by the semi-empirical equation for Cv. Deviations of Cv from the Debye model in the 
extremely low temperature region are discussed, based on the experimental and theoretical work of many 
authors. 
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N T R O D U C T I O N  

',eeently, much attention has been paid to the 
emperature dependence of heat capacity, both 
heoretically and experimentally, in relation, first to the 
eviation of Cv of amorphous polymers below 1 K from 
he Debye model 1-3 characterized by C v ~ T  3 and, 
econdly, to the critical exponent of Cv for simple liquids 
t the critical point expressed by ct and Cv~z(T~-T) -" 
Reference 4). 

It is well known that most solids obey the Cv ~ T 3 law 
ver the low temperature range. Wunderlich 5 predicted 
he temperature dependence of Cv for completely 
rystalline polyethylene (PE) based on the Tarasov 
lodel 6, where a three-dimensional Debye term for the 
)west frequencies and a one-dimensional Debye term for 
he higher frequencies are used, and obtained good 
greement between the theoretical and experimental 
alues over 1-150 K. For  temperatures > 150 K, low- 
:equency optical vibrations contribute to the specific 
eat in PE 5. However, recent work on the heat capacity 
"v of non-crystalline polymers such as polystyrene (PS) 
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and poly(methyl methacrylate) (PMMA) and non- 
crystalline dielectric solids below 1 K shows a deviation 
from the Debye model, which is summarized as: 
Cv = A T  + B T  a, where A and B are constants x -3; a higher 
heat capacity than that of the Debye model7-1°; and 
abnormal excess heat capacity with a maximum a or a 
plateau s 

It is known that the exponent ~ of Cv is 0.10 4. However, 
to our knowledge, there are no reports on the relation 
between the temperature dependence of Cv near the 
critical point and that over the temperature range-far 
from T~. In this work we have tried to find a semi- 
empirical equation for Cv on the basis of the 
thermodynamic equation and the homogeneous function 
method which can apply to liquids and solids, including 
crystalline and non-crystalline or amorphous solids. 

DERIVATION O F  SEMI-EMPIRICAL EQUATION 
FOR Cv 
In this calculation we have used two assumptions: first, 
the internal energy E ( T , V )  is separated into two terms 
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E(T,V) = E(T) + E(V); and, secondly, E(T) is expressed by 
a homogeneous function of T/(T~ - T). The expression for 
E(T,V) is then given by 

E(T,V)=coC, T{T/ (T~-  T)}d°+E(V) (1) 

where Co and d o are constants but depend on the state of 
the system, or the temperature range for solids. From 
equation (1) and the thermodynamic equation 
Cv= (~E/t~T)v it can be derived that 

CO 1 { Y / ( r  c - -  T)} -d°/T = (C~Cv/OT)v/Cv + T - 1  

+do{T- l  + ( y ~ - T )  -a} 
(2) 

where the conditions T ¢ 0  and T~T~ are used. 
Integration of equation (2) with respect to temperature at 
constant volume has been carried out from T to To, where 
To is a temperature close to Tc. The resulting equation is 

To 

In Cv(T) = doln{ (T~ - T)/T} - c o I I- {(T~ - T)/T}d°/T dT  
i /  

T 

- I n  T + l n  Ca (3) 

where c a is an integration constant and a function of 
volume in general. In this case c a is taken as a constant 
because E(T, IO=E(T)+E(V ) and is expressed using 
equation (3) by 

In C 1 = In Cv(To) + In To - doln{(T~ - To)/To} (4) 

The expression of Cv as a function of temperature is given 
using equation (3) by 

C,(T) = ca [-{ (T~ - T)/T}d°/T]exp( - c  o 11do ) (5) 

where Id° is defined by 

To 

Ido= ( { (T~- T)/T}do/T dT (6) 
~d 

T 

The internal energy E(T,V) is obtained by 

E(T, V) = CoCl exp( - Co a I do) + E( V) (7) 

It is noteworthy that Cv in equation (5) becomes infinite at 
the limit T = T~ and approaches zero at the limit T = 0 if 
d o < - 1.0. 

D E T E R M I N A T I O N  OF HEAT CAPACITY Cv AS A 
F U N C T I O N  OF T E M P E R A T U R E  NEAR T~ AND 
T = 0 K  

The heat capacity Cv of simple liquids near T~ is derived 
using a variable Y defined by 

Y = (T~ - T)/T (8) 

The integration of equation (6) is transformed, using Y, to 

ro 
P 

/do = - )  I'~°/(I + Y ) d Y  (9) 

Y 

where Yo = (T~ - To)/To ,~0. N e a r  T~, Yo < Y "~ 1, Ido is given 
by 

Ido = ydo + a/(do + 1) (10) 

It is derived from equations (5) and (10) that 

In CvT = In C 1 + d  o In Y - ydo+ 1/{co(d ° + 1)} (11) 

On the other hand, near T = 0 K  Cv is derived, using 
equation (5), as 

C v r  = c a (Tc/T)%xp[- CO I { K  - -  6oln(TJT)}] ( 1 2 )  

where K and 6 o are constants and the approximations 
T~>) T or Y--T/T~ and Ido=K-6oln(Tc/T ) are used. In 
the latter approximation we intended to express Cv as a 
function of T alone and Cv is given using equation (12) by 

Cv = c'~T (-d°-c~'6°- 1) (13) 

where c~ = q e x p ( - c o  1K)/T~(-d°-cff'6°)is a constant. 

RESULTS 

Experimental data for Cv as a function of temperature are 
available for the simple liquids 4 argon, methane, n- 
heptane, carbon tetrachloride and benzene, and polymers 
ps2,7, PMMA2,7, pEs,aa and poly(tetrafluoroethylene) 
(PTFE)lO, a 2,13 

The evaluation of do in simple liquids was done by a 
trial and error method until a linear relation between 
ln (C ,T) -do ln  Y and ydo+l was obtained. Typical plots 
are given in Fiffures I-3, where linearity is observed over a 
wide temperature range with do = -0 .10.  The linearity is 
also observed in benzene and carbon tetrachloride with 
do = -0 .10.  It is proposed that the heat capacity of liquids 
is expressed by 

CvT=Cl Y -°a °{exp(c2y°'9°)} (14) 

where c 2 = - -  1/0.9c o is a constant. 
Values of ( - d o - c o l 6 o - 1 )  in equation (13) are 

determined for PS, PMMA,  PE and P T F E  using the 

0t . . . . . . . . .  

"7 
° 
~ 11.5 

i 11.0 " A ~ A  
c 

1 0 . 5  , , , , , , , , , 

015 1 . 0  

y { 1 + d o )  

Figure  1 ln(CvT) - doln Y versus Y( '  +ao) for n -hep tane  with,  A ,  d o = 0; 
C), do= -0.10; and, &, do= -0.20; Y=(Tc-T)/T. Data are taken 
from Reference 4 
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ln(Cv T ) -  doln Y versus Y "  +do~ for methane with, A ,  d o = 0; 
O,  do= -0 .10 ;  and, A ,  do= -0 .20.  Data are taken from Reference 4 

using equation (11) in Figure 5, where In(C~T) for n- 
heptane is separated into two terms: one approaches zero 
and the other diverges infinitely on approaching To. It is 
shown in Figure 5 that the latter term gives a finite 
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Figure 3 
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ln(CvT) - d o l n  Y versus y(1 +do) for argon with, A ,  d o =0 ;  (3, 
do= -0 .10;  and, A ,  d o = -0 .20 .  Data are taken from Reference 4 

relation 

In Cv=ln c~'+aoln T (15) 

where ao = - d  o - c  o lc$ o - 1. The plot is shown in Figure 
4, where linearities are observed in the three temperature 
regions In T < - 1.0, 0 < In T < 1.4 and In T > 3.4. It is 
obtained from the slope in Figure 4 that over the 
temperature range 1-4 K Cv is proportional to T a, while 
for T > 30 K and 0.1 < T < 0.36 K Cv is proportional to T. 
The solid lines in Figure 4 indicate the T and T 3 
dependences of Cv. A deviation from the Debye T a law 
occurs at a temperature < 0 . 3 6 K  in the amorphous 
polymers such as PS and PMMA. The temperature 
dependence of Cv is approximated over the low 
temperature region 0.1-4 K by 

Cv=AT +BT a (16) 

where A and B are constants. 

DISCUSSION 

It is interesting to examine the temperature dependence of 
Cv based on the experimental data 4. In n-heptane Cv has a 
linear temperature dependence in the liquid state except 
near the gas-liquid critical point, while Cv is almost 
constant in methane and argon, for example Cv/R = 3.7- 
4.0 for methane and 2.2-2.4 for argon 4. A typical 
temperature dependence of Cv for the liquids is analysed 
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-2 0 2 q 6 
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Figure4 ln(Cv/R) versus In T for polymers: [:], pS2.7; ~ ,  PMMA2.7; 
O ,  crystalline PE  5; & ,  amorphous PE 11 ; O ,  PTFE 1°'12,~ 3 
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The two terms in ln(CvT) for n-heptane v e r s u s  temperature Figure 5 
T, from equation (11), l nCvT=lnc  l+doln Y--Yd°+l/{co(do+ 1)}. 
Curve A is for d o In Y = -0 .10  In Y; curve B is for 
--ydo+l/{co(do+l)}= --0.9125Y°'9; and curve A + B  is the 
sum of A and B. The value of 0.9125 is determined from the slope in 
Figure I. The total In(CvT) is expressed by 
ln(CvT) = 11.62 -0 .10  In Y -0.9125Y °'9, where In c I = 11.62 (J mol -  1) 
is determined using data from Figure 1 
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contribution to C~ over the temperature region far from 
T~. 

It is important to discuss the deviation of the heat 
capacity of non-crystalline solids from the Debye law 
Cv ~ T 3 in the low temperature region below i K. It is 
confirmed experimentally by many authors that the linear 
temperature dependence of Cv below 1 K is a general and 
important phenomenon characterizing the heat capacity 
of non-crystalline solids 1-3. Even at temperatures < 4 K 
where T 3 behaviour is found, the heat capacity data 
departs significantly from the Debye theory ~-~°. Many 
attempts to explain the origin of the linear temperature 
dependence of Cv and excess heat capacity from the 
Debye theory have been made 1-3'7-1°'~4. For example, a 
theoretical explanation of the linear dependence of Cv was 
proposed by Phillips using an ionic tunnelling model ~4, 
while Zeller and Pohl tried to attribute it to motional 
states of ions, trapped atoms or large groups of atoms, or 
one-dimensional vibrations within a three-dimensional 
solid 2. The magnitude of the heat capacity for amorphous 
polymers determined experimentally is about 100 ~o or 
more higher than that calculated from the sound velocity 
measurement using the Debye equation. Rosenstock 15 
has suggested the presence of cavities in the disordered 
structure, while Choy et al. 9 indicate that localized 
vibrational modes in the amorphous phase are 
responsible for the excess heat capacity. 

It is interesting to explain the linear temperature 
dependence of Cv using the equations in this work. The 
expression for the heat capacity near T--0  K is derived 
using equation (3) by replacing T O with T * ~ 0 K  and 
equation (5) with approximations 

and 

T/(Tc -- T)~  T/T~ 

To* 

= j (TdT)a°/T dT Io 
t l  

T 

= - (TJ"oJ ldo l ) -  l(Tld°l- To *Id°l) ( 1 7 )  

using do = - I d o l .  The expression is 

C v T = C' 1 (T/Tja°lexp { - T* Id°l/(co[do[ TJa°l)}exp { (Tlad/(cold o TJa°l)} 

= c', (T/TJ°lexp{ - To * "o /(coldol TJ.o )} E1 ÷ Tl"°I/(ldo[ T~l"OlCo) 

+ {(Idol!)=/(2ldol!)} T=i"°P/(ldol TJa°%) 2 +...3 
(18) 

where c ' I=Cv(TJ ' )T~{T* / (T~-TJ ' ) }  d° is a constant. 
Equation (18) is simplified as 

Cv = K 1 T  tla°l - 1) ÷K2T(21do[- 1) ..~_ . . . (19) 

where K 1 and K 2 a r e  constants. If it is assumed that 
d o = -2 .0 ,  then near T--0  K Cv is given by 

C v = K I  T + K 2 T 3  + .  . . (20) 

which is a function of temperature similar to equation 
(16). For d o = - 1.0, Cv is expressed by 

C~= K'I + K'2T + K'3T2 + ... (21) 

which does not satisfy the condition that Cv~0 in the 
limit T ~ 0 K .  It is suggested that equation (5) with 
do = - 2.0 or equation (20) gives a characteristic feature of 
Cv in the low temperature range for non-crystalline solids. 
The ratio K2/K 1 in equation (20) is calculated using 
equation (18): 

K 2 / K  1 = (2coT2)- 1 (22) 

where K 1 is approximated by Crl/Tc 2 due to 
exp( -  T*/coldol T Idol)~ 1.0.  Values of Kx and 
K 2 a r e  determined experimentally 2, for example 
K 1 = 52 x 10-Tjg - 1 K  -2 and K2=460 × 10-7jg  -1 K -4 
f o r  P S  2. It is obvious from the values of K 1 and K 2 

that the contribution of the K 1T term to Cv becomes 
significant over the temperature range around 0.1K, 
while the T 3 term becomes more dominant at a 
temperature > 1K, which is demonstrated in Figure 6, 
where In Cv'-dn{ T + ( K 2 / K 1 ) T  3} is plotted against In T 
for various ratios K 2 / K  1. 

It is very interesting to refer to the theoretical 
prediction of Cv for crystalline polymers. The most useful 
theory of Cv for crystalline polymers is that proposed by 
Tarasov, which leads to the T 3 dependence of Cv at low 
temperature, while the T 2 dependence of Cv is discussed 
by Tarasov 16, Gurney17 and Stockmayer 1 s. Wunderlich 5 
also proposed a more detailed model based on the 
Tarasov model where vibrations in the crystalline 
polymer are taken into account. Lee and Choy showed 
that the heat capacity of fluoropolymers is reasonably 
explained by the Tarasov model 19. On the other hand 
Swaminanthan and Tewari 2° proposed an anisotropic 
dispersive continuum model and successfully explained 
the experimental results for the heat capacity of PE of any 
degree of crystallinity. 

In this work we have focused on a characteristic feature 
of the temperature dependence of the heat capacity for 
liquids and solids and tried to explain the behaviour using 
a semi-empirical equation and the experimental data. It 
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Figure 6 In{T+ ( K 2 / K 1 ) T  3} versus In T for various values of K 2 / K  1 : 
A, 10; B, 5; C, 1.0; D, 0.1; E, 0. The slope of line E is 1.0, corresponding 
to Cv ~ T, while the steeper slope in lines A-D is 3.0, corresponding to 
Cv ~ T 3 
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was speculated that an index do in equation (5) plays an 
important  role in predicting the temperature dependence 
of Cv and depends on the state of the system sensitivity. In 
a liquid state do = - 0 . 1 0  explains the heat capacity over 
the entire range of liquid state, including the critical 
region. On the other hand, in a non-crystalline solid 
d o = - 2 . 0  can predict C v = A T + B T  a over the low 
temperature range, including the extremely low 
temperature range < 1 K, while in a crystalline solid do 
may be equal to - 4 . 0  if Cv is expressed by Cv = B T  3 over 
the low temperature range, including < 1 K. Although we 
cannot yet explain the physical meaning of do, useful 
information on heat capacity over a wide range of 
temperatures has been found. It  is seen from Figure  4 that 
the heat capacity of non-crystalline solids such as 
amorphous  polymers indicates a discontinuous change 
from Cv'-" T to Cv~ T through the Cv ~ T 3 region with 
increasing temperature, which is similar to the behaviour 
in the neighbourhood of the glass transition temperature 
for polymers with respect to the discontinuity of the heat 
capacity. 
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